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Veri�cation testing in computational �uid dynamics:
an example using Reynolds-averaged Navier–Stokes
methods for two-dimensional �ow in the near

wake of a circular cylinder
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SUMMARY

Veri�cation testing was performed for various Reynolds-averaged Navier–Stokes methods for uniform
�ow past a circular cylinder at Re=5232. The standard and renormalized group (RNG) versions of the
k–� method were examined, along with the Boussinesq, Speziale and Launder constitutive relationships.
Wind tunnel experiments for �ow past a circular cylinder were also performed to obtain a comparative
data set. Preliminary studies demonstrate poor convergence for the Speziale relationship.
Veri�cation testing with the standard and RNG k–� models suggests that the simulations exhibit

global monotonic convergence for the Boussinesq models. However, the global order of accuracy of
the methods was much lower than the expected order of accuracy of 2. For this reason, pointwise
convergence ratios and orders of accuracy were computed to show that not all sampling locations had
converged (standard k–� model: 19% failed to converge; RNG k–� model: 14% failed to converge).
When the non-convergent points were removed from consideration, the average orders of accuracy
are closer to the expected value (standard k–� model: 1.41; RNG k–� model: 1.27). Poor iterative and
global grid convergence was found for the RNG k–�=Launder model. The standard and RNG k–� models
with the Boussinesq relationship were compared with experimental data and yielded results signi�cantly
di�erent from the experiments. Copyright ? 2003 John Wiley & Sons, Ltd.
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INTRODUCTION

Stern et al. [1] and Roache [2] have established methodologies for testing the accuracy
of computational �uid dynamics (CFD) simulations based on the principles of experimental
quality assurance techniques. This entails a two-pronged approach: veri�cation and validation.
According to AIAA, veri�cation is ‘the process of determining that a model implementation
accurately represents the developer’s conceptual description of the model and the solution to
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the model’ [3]. Veri�cation ensures that there is little error between the true solution to the
equations being solved and the approximate numerical solution. Validation is the process of
ensuring that a numerical solution is within some error tolerance of either physical results
obtained in the laboratory or of an analytic solution. This study focuses upon the veri�cation
process and its e�ect on model interpretation. The case selected for study is the air�ow
past a circular cylinder at Re=5232 using steady Reynolds-averaged Navier–Stokes (RANS)
equations with two variations of the k–� turbulence model.
It is well known that steady RANS solutions of air�ow past blu� bodies have been poorly

validated with experimental data [4, 5] and when compared with large eddy simulations (LES).
Many reasons exist for these shortcomings, including:

• inability of high Reynolds number turbulence models to capture laminar or transitional
boundary layer behaviour [6];

• omission of periodic vortex shedding, where the length scale of turbulent �uctuations
modelled with the k–� method are at the scale of the boundary layer rather than the
scale of a shedding vortex [4, 6];

• failure to represent the interaction between Reynolds stresses and the mean �ow [4];
• late boundary layer separation [7–10];
• excessive turbulence kinetic energy levels at the upstream stagnation point of the blu�
body, leading to underestimation of the near wake size [7–13];

• overprediction of dissipation of turbulence kinetic energy [14–16];
• and, inaccurate turbulence closure approximations [17, 18].
Despite these disadvantages, RANS methods are still commonly used in applied �uid dy-

namics studies (for example [19–21]). The applicability of CFD predictions is strongly de-
pendent upon the modeller’s accuracy requirements. Lasher [22] notes four categories for the
ability of CFD simulations to predict experimental results:

(I) the simulation predicts experimental results within ‘desired engineering accuracy’;
(II) the simulation quantitatively and accurately predicts the e�ects of changes in initial

conditions or geometry despite biases in both the initial and changed simulations;
(III) the simulation qualitatively predicts trends in quantities of interest; and
(IV) the simulation in incapable of predicting trends.

Regardless of the problems cited above, those predictions are all, at minimum, category III.
Engineers often need to know time-averaged trends for design considerations, in lieu of de-
tailed instantaneous behaviour that is more costly and time consuming to acquire. Category II
and III predictions from steady RANS simulations are still very useful to the engineer for ob-
taining information about a process. Steady RANS methods are commonly available through
commercial CFD software and require much less CPU time than do variants of direct numer-
ical simulations (DNS) for the solution of Navier–Stokes, including time-dependent vortex
methods and LESs [23]. Many software packages also allow easy creation of computational
meshes; this feature enables accommodation of more complex geometries. Furthermore, the
coe�cients used in the RANS models are generally considered robust enough to ful�ll a wide
range of engineering problems [23, 24]. It should be reiterated that this study is not intended to
persuade the reader to use steady RANS methods over other types of models for blu� body
�ows; many other studies address model preference through detailed validation [4, 25–27].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1371–1389



VERIFICATION TESTING IN COMPUTATIONAL FLUID DYNAMICS 1373

The objective of this work is simply to use a set of simulations to illustrate the various issues
involved with attaining a veri�ed solution with a commonly used CFD model.
Without analysis of both the iterative convergence and grid-independence issues, com-

parisons of model results with experimental data have limited value in real-world applica-
tions [1, 2]. For instance, the Majumdar and Rodi [6] study yielded better agreement with
experimental data using a coarse mesh simulation than with a �ne mesh. Had they increased
the density of the mesh further, Majumdar and Rodi [6] may have seen a larger divergence
from the experimental data despite more accurate numerics. Hence, the agreement between
simulation and experiment for the coarse mesh may have been a coincidence and not a func-
tion of the numerics. In this study, we explore these veri�cation issues for the circular cylinder
problem. A comparison of the model with experimental data acquired in a wind tunnel study
of �ow past a circular cylinder at Re=5232 is also provided to illustrate the e�ect of the
veri�cation error on the comparison between the models and the experimental data. Veri�ca-
tion will be performed based on the velocity �eld because this is a primary quantity solved
in the RANS simulation; derived quantities such as drag and pressure coe�cients will not
be considered here. Two di�erent turbulence models, the standard and RNG k–� models, are
studied. Additionally, the RNG k–� model is run with the Boussinesq and Launder constitu-
tive relationships to assess their e�ect on veri�cation. Preliminary studies performed with the
RNG k–� model using a Speziale constitutive relationship, as well as meshing and boundary
layer issues, are also addressed.

COMPUTATIONAL METHODS

All simulations were performed using either the FIDAP v. 8.0.1 computational �uid dynamics
software on an IBM 2GB RAM 933MHz processor PC or FIDAP v. 8.6.2 on an SGI Origin
2400 with 48–400MHz MIPS R12000 processors and 24 GB RAM. FIDAP is capable of gen-
erating unstructured or mapped meshes. After the mesh has been created, boundary conditions,
a turbulence model and solution parameters are designated. Then, the �nite-element method is
used to develop a system of equations for each degree of freedom for each discretized element.
A segregated pressure projection method is employed. This method considerably reduces the
necessary computational e�ort for solving the system of equations [28]. The linear system
of equations is solved using the conjugate gradient squared method for the symmetric matrix
and the conjugate residual method for the non-symmetrical matrix. Streamline upwinding is
used to reduce false numerical di�usion [29]. Streamline upwinding is second-order accurate
in the transverse direction, but is �rst-order accurate along the primary �ow direction where
advection is the dominant transport mechanism. However, given the dominance of convection
over di�usion in the streamwise direction, the additional streamwise di�usion does not have
a large impact on the order of accuracy of the method. For this reason, the method is still
considered to be very nearly second-order accurate.

Mesh development and re�nement

Preliminary studies demonstrated that an unstructured mesh could not be re�ned in a con-
sistent manner; for this reason, a mapped mesh was used. We developed a semi-circular
mesh, as shown in Figure 1(a) (full mesh) and 1(b) (close-up), similar to those of Celik
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1374 J. RICHMOND-BRYANT

Figure 1. (a) Semi-circular mesh used for the veri�cation and validation studies. (b) Close-up
of the mesh near the cylinder boundary.

and Sha�er [30] and Majumdar and Rodi [6]. This mesh is divided into six regions: up-
stream and downstream outer layers, upstream and downstream inner layers, and upstream
and downstream near wall layers, as shown in Figure 1(a). The size of the cell increases
radially outward within the inner and outer layers, not including the boundary. The near
wall layer is held at a constant thickness with a width of one cell to maintain a consistent
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friction velocity pro�le among the re�nements. To conserve computational resources, the inner
layers contained twice as many elements as did the outer layers in one-quarter of the space.
A mesh re�nement factor of

√
2 was applied to the inner and outer layers to determine grid

convergence behaviour over three successively �ner grids.

Boundary conditions

Boundary conditions were selected to yield the same Reynolds number as the wind tun-
nel experiments, described below. The simulations were non-dimensionalized by designating
U∞=1, D=1 and �=1. Laminar viscosity was set equal to 1=Re. Based on the wind tunnel
experiments, Re=5232. Inlet kinetic energy was calculated based on the freestream turbulence
intensity measured in the tunnel of 3.5%, using k=1:5 (TI · U∞)2 to yield a kinetic energy
of 1:84× 10−3 [31].
Based on the relationship between turbulent viscosity, kinetic energy and dissipation, �t =

C�k2=�, a relationship for � is derived: �=C�k2=R��, where R�=�t=� [8, 9, 32]. The term R�
is used to estimate �t for calculation of the inlet value of � and generally falls in the range
R�=10–100. Based on Bosch [33], where he analysed inlet dissipation length scales for wind
tunnel experiments performed at Re=22; 000 with TI=2% and blu� body blockage of 7%,
R�∼ 10. These experimental conditions are close enough to the ones used here, Re=5232,
TI=3:5%, and blockage=4:8%, to assume R�=10 for the � boundary condition; this yields
an inlet boundary condition of �=1:59× 10−4. To estimate if the dissipation initial condition is
adequate, one can consider that dissipation can be given by � ≈ C�k3=2=L, where L=freestream
turbulence length scale. For the honeycomb used as a �ow straightener in the experiments,
L=O(0:01m) and �=O(10−4 m2=s3). This is of the same order of magnitude as used in the
initial conditions.
Outlet boundary conditions were

@u
@n
=0;

@v
@n
=0;

@k
@n
=0;

@�
@n
=0

At the cylinder, no-slip conditions apply, and along the symmetry plane, boundary conditions
were left free with the exception v=0.

Constitutive relationships

The Reynolds stress term is approximated in FIDAP in one of three ways by linear
(Boussinesq), quadratic (Speziale) or cubic (Launder) constitutive relationships. Each of the
approximations presented are truncated forms of the true Reynolds stress. For this reason,
some error is incurred by the use of any of these formulations [34].

Boussinesq. The Boussinesq constitutive relationship has the linear form

−�u′iu′j=2�tsij − 2
3 k�ij (1)

where

sij=
1
2

(
@ui
@xj

+
@uj
@xi

)

and �ij=Kronecker delta function.
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Speziale. Speziale [35] illustrated that the Boussinesq approximation fails to capture secondary
�ow structures for the two-dimensional and three-dimensional rectangular fully developed
turbulent channel �ow problems, and underpredicts the size of the recirculation region for the
�ow past a backward-facing step. These observations motivated Speziale [35] to develop a
second-order Reynolds stress model:

−�u′iu′j=2�tsij −
2
3
k�ij + 4cSpc�

k
�
�t

[
silskj + ṡij − 1

3
(smnsmn + ṡmm)�ij

]
(2)

where cSp is a constant (default = 1:68), ṡij=−(@ui=@xk)slj − (@uj=@xk)ski, and the subscripts
m and n refer to the two unit normals. Speziale [35] found that this second-order constitutive
relationship gave better agreement with experimental data for each of the three cases mentioned
above.

Launder. Craft et al. [36] devised a third-order constitutive relationship. In addition to al-
lowing for secondary eddies and anisotropy, Launder’s approximation is intended to better
accommodate swirling �ows:

−�u′iu′j=−2
3
�k�ij + 2�tsij + 4cL1�t

k
�

(
sikskj − 1

3
smnsmn�ij

)

−4cL2�t k� (!ikskj +!jkski)− 4cL3�t
k
�

(
!ik!jk − 1

3
!mn!mn�ij

)

+8cL4c��t
k2

�2

(
ski!lj + skj!li − 2

3
skm!lm�ij

)
skl

−8cL5c��t k
2

�2

(
siksjl − 1

3
smksml�ij

)
skl + 8cL6c��t

k2

�2
sijsklskl

−8cL7c��t k
2

�2
sij!kl!kl

(3)

The Launder constitutive relationship contains vorticity, !. Also, note that cL1–cL7 are
constants (default values: cL1 = 0:1, cL2 = 0:1, cL3 = 0:26, cL4 = 1:0, cL5 = 0, cL6 = 0:1, cL7 = 0:1),
and the subscript l is also used to denote a unit normal.

Turbulence models

Standard k–�. The standard k–� model closes the Navier–Stokes equation by providing an
estimate for the turbulent viscosity based on the kinetic energy of turbulence, k= 1

2u
′
iu′i , and

the viscous dissipation of turbulence kinetic energy, �=(�=�)(@u′i =@xk)(@u′i =@xk):

�t =
C��k2

�
(4)

where C�=constant and �=�uid density [32].
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To obtain u, v, k and �, a system of equations including the momentum transport equations
for u and v and semi-empirical transport equations for k and � are solved:

ui
@k
@xi
=
1
�
@
@xi

[(
�+

�t
�k

)
@k
@xi

]
+
�t
�
(�u′iu′j)

@ui
@xj

− � (5a)

ui
@�
@xi
=
1
�
@
@xi

[(
�+

�t
��

)
@�
@xi

]
+
C1�t
�

�
k
(�u′iu′j)

@ui
@xj

− C2 �
2

k
(5b)

Equation (5) contains �ve constants found empirically by Launder et al. [37] to apply to a
wide range of free turbulent �ows: C1 = 1:44, C2 = 1:92, C�=0:09, �k =1:00 and ��=1:30;
these are assumed applicable here. While these constants are generally considered robust, their
application might incur some error in the solution given the empirical nature in which they
were found.

Renormalized group k–�. The RNG k–� model is derived from the RNG theory that smaller
scales of multiscale systems, in this case turbulence, can be removed successively through
re-scaling to obtain a �xed picture of the system. Details of the method’s derivation are given
in References [15, 38, 39].
In the RNG k–� model, the system of Equations (5) is unchanged, with the exception of

adding an extra term to the �-transport equation (5b):

−2�
(
@ui
@xj

+
@uj
@xi

)
@ul
@xi

@ul
@xj

≈−C��
3(1− �=�0)
1 + ��3

�� 2

�k

where

�=

(
�k
��

)√
1
2

(
@ui
@xj

+
@uj
@xi

)2

the ratio of the characteristic time scale of the turbulent strain to that of the mean �ow.
Because the RNG k–� model is derived from theory, rather than from a semi-empirical basis,
the coe�cients are computed explicitly: C1 = 1:42, C2 = 1:68, C�=0:085 and �K =��=1:39
[15, 38].

Near-wall treatment

The FIDAP software uses the Reichardt law to describe boundary layer dynamics. The
Reichardt law is a semi-empirical equation for friction velocity [40]:

u+ =
1
	
ln(1 + 	y+) + 7:8

[
1− exp

(
−y

+

11

)
− y+

11
exp(−0:33y+)

]
(6a)

where y+ is the non-dimensional distance from the wall, 	∼ 0:41=von Karman constant.
Equation (6a) overlaps both the laminar region of the boundary layer (y+¡5):

u+ =y+ (6b)
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and the turbulent boundary layer (y+¿30):

u+ =
1
	
ln(Ey+) (6c)

where E is an empirical constant, E∼ 9:0 for smooth walls.
This wall function approach replaces the need for a very �ne discretization in the vicinity

of a no-slip surface, and it makes simulations with boundaries more feasible, in terms of
computational resources. However, this model assumes that turbulence kinetic energy and
dissipation are constant throughout the wall elements [28]. This is an unphysical assumption
because k and � should approach zero at a wall boundary. This provides another source of
error in the k–� models.
Although the use of Equations (6a)–(6c) is assumed valid for any y+, FIDAP [28]

recommends that the user maintain y+¿30 to minimize any errors in the assumption of
the Reichardt law. To do so, the cell next to the boundary is kept at a �xed height that is
large enough to contain the laminar and transitional regions of the boundary layer. However,
this approach has been questioned in Launder [41], Rodi [7], and others because the law of
the wall is invalid where �ow is separated. Furthermore, Celik and Sha�er [30] argue that,
because k and � are not solved in the boundary layer, that the value of y+ should be incon-
sequential. In the FIDAP formulation, a mixing length model using van Driest’s formulation
is used to �nd the eddy viscosity in the boundary layer.
To test whether Celik and Sha�er’s [30] assertion is true, preliminary studies were run on a

coarse mesh of 38 642 elements with an RNG k–� model and the Boussinesq Reynolds stress
approximation. Two simulations were run with boundary layer thicknesses of 0.025 and 0.05.
The smaller boundary layer thickness yielded an attached region y+∼15, while the larger
boundary layer thickness yielded an attached region y+∼30. A typical y+ pro�le around the
cylinder is given in Figure 2 for a boundary layer thickness of 0.025. The error between the
two simulations varied from 2.1 to 4.6% for u, v, k and � and was 6.7% for p. For this
reason, the smaller boundary layer thickness was used for subsequent runs. This selection
was made to preserve a smoother gradient in the mesh near the boundary layer upon mesh
re�nement outside the boundary layer.

Numerical procedure

Errors in the numerical simulation �SN can be broken down as a function of contributions
from iteration �I, meshing �M, time step (if unsteady) �T and other parameters �P [1]:

�SN = �I + �M + �T + �P (7)

In the above analysis, iteration error is �rst reduced as much as possible. Iteration error is
computed as the relative L2 error norm for a given degree of freedom, X , and must be lower
than a user-designated solution error tolerance, �
, for convergence to occur at iteration i [28]:

‖�Xi‖
‖X ‖ ¡�
 (8)

where �Xi=Xi − X . Convergence is achieved in FIDAP when all degrees of freedom, at
all nodes, fall beneath �
. Before analysing the grid convergence of each turbulence model,
iterative convergence is tested on a coarse grid for each model. To assess the error between
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Figure 2. A typical y+ pro�le for standard and RNG k–� models using either the Boussinesq
or Launder constitutive relationships.

each level of the solution error tolerance, it is reduced sequentially by an order of magnitude
from 10−3 to 10−6. The error between each level of tolerance re�nement is estimated at
100 locations in the near-wake region over 06y=D60:5, 0:6256x=D63 through a pointwise
comparison of each variable at subsequently decreasing tolerances. L2 error norms for u, v, p,
k and � are analysed for each to assess the e�ect of the tolerance on the solution. In reality,
the iterative and grid errors are not likely to be mutually exclusive. However, �rst reducing
the iterative error substantially and then running �ner grids with very high iterative tolerances
minimizes the e�ect of iteration.
Grid independence is then tested by sequentially doubling the total number of elements in

the domain to obtain three meshes with which the error norms are decreasing and an order
of accuracy can be estimated. Note that, for the total number of elements to be doubled,
the number of elements on one side of the mesh is increased by a grid re�nement factor,
r=

√
2 [1].

The procedure used here is taken primarily from References [1, 2]. First, absolute local
errors, �, are computed at all points, x of interest as �(x)=Xc − Xf , where X is a speci�c
degree of freedom, the subscript f represents the �ne grid, and the subscript c represents the
next coarser grid. L2 relative error norms are then computed as

‖Xf‖2 =
√∑

x [�(x)]2

max Xf
(9)

Summation is taken at the same 100 points where iterative convergence was tested. These error
norms are not used directly for determining grid independence via Richardson extrapolation.
They can be employed for deriving a global order of accuracy for the model and for testing
for global non-monotonicity.
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It is sensible to check for non-monotonic convergence prior to computing the grid con-
vergence index (GCI) to ensure that errors are decreasing in a consistent manner. If grid
convergence is not monotonic, then a GCI cannot be computed. Non-monotonicity is tested
by the convergence ratio, given by Stern et al. [1] based on a global L2 norm as

R=
‖Xf‖2
‖Xm‖2 (10a)

The local convergence ratio can also be calculated at any sampling point using the absolute
error

R(x)=
�f (x)
�m(x)

(10b)

Here, the subscript m refers to the re�nement from the coarse to the medium mesh, and
the subscript f refers to the re�nement from the medium to the �ne mesh. Notice that non-
monotonicity cannot be tested without running the simulation on three successively �ner grids.
According to Stern et al. [1], monotonic convergence occurs when 0¡R¡1. When R¡0,
oscillatory convergence exists. The simulation is divergent when R¿1. However, Coleman
et al. [42] demonstrate that oscillatory convergence can sometimes yield 0¡R¡1. Thus, this
test can only con�rm if a simulation is not converging monotonically. The local convergence
ratio is useful for determining speci�c points where the solution is divergent; hence, it is
possible that a GCI can be computed for some but not all points.
The observed order of convergence must be computed prior to determining grid indepen-

dence. It can also be computed from global or local errors. The global order of convergence
is computed from the L2 norms as [1]

p=
ln(‖Xm‖2=‖Xf‖2)

ln(r)
(11a)

and the local order of convergence is [43]:

p(x)=
ln(�m=�f )
ln(r)

(11b)

In the case where the local p(x) is computed at each point, the overall order of convergence
for each degree of freedom is given as the average of all points not shown to be divergent
with respect to the convergence ratio. Advantages of local vs global computation of p will
be addressed in the Results and Discussion section.
The GCI is used for �M in this study. The GCI is an error estimator based on Richard-

son extrapolation, which accounts for the order of accuracy of the simulation and the grid
re�nement factor chosen by the modeller, as well as for the error di�erence from one grid
re�nement to the next. The absolute GCI is computed at each sampling point as [2]

GCI(x)=FS
�f

(rp − 1) (12)

With the factor of safety, FS =1, the GCI reduces to the Richardson error estimator; FS adds
conservatism to the error estimate. A minimum FS =1:25 is recommended by Roache [2]
when three grids have been studied to estimate the order of convergence. As noted before,
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the GCI cannot be computed where the solution is known to be divergent. For this reason,
use of a global convergence ratio in lieu of pointwise values may mislead the modeller to
believe that the simulation is convergent everywhere when, in fact, oscillating or divergent
conditions occur in some locations.
Because the simulations presented here are steady state, �T =0. Other contributions to the

error can include stability enhancement techniques such as upwinding to minimize arti�cial
viscosity and truncation of the eddy-viscosity and pressure terms [34]. �P is much more dif-
�cult to quantify because small changes in these parameters can either cause negligible or
drastic e�ects, depending on their value prior to the change. For this reason, these parameters
have been chosen using the guidelines of the software manufacturer to minimize their con-
tribution to the numerical simulation error [28]. The overall error, �SN, is used to bound the
computed values of u, v, p, k and � when comparing the simulation results with experimental
data.

EXPERIMENTAL METHODS

Wind tunnel

Experiments were performed in a recirculating wind tunnel located at the U.S. Environmental
Protection Agency’s Atmospheric Methods and Monitoring Branch (Research Triangle Park,
NC). The tunnel consists of a blower powered by a 50-hp motor that draws air through
a set of louvers. As the air passes the corner opposite to the blower, a set of direction
vanes guides the air through a turbulence grid with 4′′ × 4′′ openings. After passing through
a contraction, the air encounters a honeycomb grid, which removes any large-scale turbulent
structures from the �ow. Finally, the air travels downstream to the 1:52 m× 1:21 m× 7:30 m
test section where velocity measurements are taken with a two-dimensional 514-nm Argon-Ion
laser phase Doppler anemometer (PDA) (Dantec Measurement Technology, Inc., Copenhagen,
Denmark), which is described in detail in many publications including [44–47].
Tunnel speeds can reach up to 6:67 m=s. For a freestream velocity of 1:0 m=s, the tunnel

velocity pro�le is uniform over the cross-section with a spatial coe�cient of variation of
3.0%; the turbulence intensity at this speed is 3.5%. A detailed description of this tunnel can
be found in Reference [47].

Measurements taken

Experiments at Re=5232 are performed at a velocity of 1 m=s past a 0:0762 m diameter,
1:17 m tall smooth circular cylinder. The presence of the aluminum cylinder results in 4.8%
blockage over the tunnel cross-sectional area. To detect the air motion, propylene glycol smoke
particles are released into the air by a theatrical smoke generator (Martin Magnum Pro 2000,
�Arhus, Denmark).
Two-dimensional air velocity is measured with the PDA at 140 positions downstream of

the cylinder. Axi-symmetry is assumed so that measurement is made on only one side of
the cylinder. Preliminary spot checking of the symmetry with the cylinder in place supports
this assumption. This assumption is also supported by Heist et al. [47], which demonstrated
that the velocity pro�le was nearly constant (with a coe�cient of variation of 3%) over
the cross-sectional height of the empty wind tunnel. The same wind tunnel is used in this
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study. Measurements are made at only one height, 0:61 m above the �oor and are taken at
0:6256x=D64 and 06y=D60:75 with the origin located at the cylinder centre. Measuring
points are spaced 0.125 diameters apart to obtain a detailed picture of the recirculation bubble
downstream of the cylinder. A beam power of 3 W is maintained to eliminate noise from
small particles [48, 49], and velocities from particles yielding a signal-to-noise ratio less than
+1 dB are omitted to avoid bias in the velocity calculation [50].
From the time series of data collected at each measurement point, information about velocity

and turbulence intensity is calculated; 95% con�dence intervals for the velocity are computed
based on measurement uncertainty resulting from signal noise and sampling independence.
Details of each computation are given in Reference [51] for S=N and in Reference [52] for
sample independence. Measurement uncertainty based on signal noise and sample indepen-
dence is relatively low, ∼O(10−3). Based on the optical constraints, limit of detection should
not be an issue provided that the photodetectors are aligned for the optimal scattering angle
of the seed particles, because laser Doppler anemometry is a primary standard measurement.
However, data is subject to machine round-o� error in signal processing. For the 8-bit signal
processor, the round-o� error results in computation to three signi�cant digits. Hence, a limit
of detection is estimated to be 0:001 m=s.

RESULTS AND DISCUSSION

Preliminary studies with the RNG k–�=Speziale model demonstrate extremely slow iterative
convergence. For this reason, we analyse the velocity �eld and the y+ pro�le around the
cylinder to ensure that we are obtaining a ‘physical’ result. It is found that the y+ pro�le
for the RNG k–�=Speziale model is much di�erent from the y+ pro�le for the other models,
which are similar to Figure 2. For the RNG k–�=Speziale model, y+ is very close to zero
over the �rst 54◦ on the upstream side of the cylinder. A peak in y+ at 104◦ corresponds
to an isolated, sharp peak in the kinetic energy pro�le around the circular cylinder, which is
also near zero around the upstream stagnation point. Because this �nding is unphysical and
apparently inhibits iterative convergence, the RNG k–�=Speziale model is not included in the
veri�cation study.

Veri�cation

Iterative convergence. Results from the iterative convergence test are shown in Table I for
the standard k–� and RNG k–� models with a Boussinesq constitutive relationship and the
RNG k–� with a Launder constitutive relationship. The table displays relative L2 error norms
in u, v, p, k and � for each order of magnitude change in iteration tolerance. For the standard
k–� and RNG k–�=Boussinesq models, iterative convergence is achieved with errors that are
O(10−2) when changing the tolerance from 10−3 to 10−4. While this error is reasonably low,
decreasing the iteration tolerance two orders of magnitude to 10−6 yields all errors below
0.01 for the standard k–� and RNG k–�=Boussinesq model.
For the RNG k–� with a Launder constitutive relationship, iterative convergence beyond

a tolerance of 10−3 is not obtained. The pressure error stabilizes around 10−3 and does
not show any sign of decreasing, although the other degrees of freedom had errors between
10−5 and 10−4. To attain convergence to a tolerance of 10−3 for pressure in the RNG k–�=
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Table I. Two-norm errors resulting from changing the solution error tolerance for each model.

u v k �

Solution error tolerance Standard k–�

10−3–10−4 0.14 0.025 0.0094 0.0087
10−4–10−5 0.051 0.0099 0.0054 0.0038
10−5–10−6 0.0081 0.0014 0.00092 0.00062

RNG k–�=Boussinesq
10−3–10−4 0.14 0.031 0.0056 0.0085
10−4–10−5 0.091 0.021 0.0087 0.0067
10−5–10−6 0.0077 0.0014 0.00085 0.00055

RNG k–�=Launder
10−2–10−3 0.035 0.035

0.29 0.093

Launder model, the pressure clipping factor, used in FIDAP to clip small pivots in the matrix
decomposition scheme [28], is decreased from 10−6 for the Boussinesq runs to 10−13. To
assess the iterative error for the RNG k–�=Launder model, the L2 error norm is compared for
reducing the tolerance from 10−2 to 10−3. These errors are O(10−1). This is excessive, and the
RNG k–�=Launder model cannot be compared with experimental data. However, the Launder
model is included in the grid independence portion of the veri�cation study to illustrate the
potential e�ect of large iterative errors on attaining grid independence.

Grid independence. For the standard k–� model grid independence test, the mesh length scale
is decreased by a factor of

√
2 to obtain a doubling of the number of elements in the domain

outside the boundary layer. Table II shows the relative L2 global error di�erences in u, v,
k and � for two mesh re�nements from 38,642 (M1) to 78,242 (M2) elements and from
78,242 (M2) to 152,546 (M3) elements. Error di�erences decrease consistently over the two
re�nements. The global convergence ratio, R, is on average, 0.84. This result suggests that
monotonicity cannot be ruled out for the standard k–� method. The global order of accuracy,
p, for the standard k–� model is computed as 0.52 [1, 2]; the solution method is reported to
be second-order accurate [28].
With second-order upwinding used for the convective terms, it would be expected that the

overall p≈ 2. For this reason, local convergence ratios and orders of accuracy were computed
for the standard k–� method at each point, following Cadafalch et al. [43]. It was found that
19% of the sampling points had not reached the asymptotic limit of convergence for all degrees
of freedom, where 0¡R¡1, despite the global convergence ratio’s indication of monotonicity.
Hence, the global convergence ratios are misleading. When the divergent points are removed,
�p = 1:41 for all degrees of freedom; this is much closer to the expected order of accuracy.
However, �p falls below the expected range for the u velocity with �p = 0:84. Further review
of the data for u shows that only 20% of points have orders of accuracy in the expected
range, with �p = 1:27. Only these locations can actually be considered veri�ed with respect
to the design of the method and used in validation of the u velocity �eld.
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Table II. Global relative two-norm errors resulting from changing the mesh density for each mesh.

u v k �
Standard k–�

M1–M2 0.081 0.00891 0.0052 0.0050
M2–M3 0.064 0.0080 0.0042 0.0042
R 0.79 0.90 0.81 0.84

RNG k–�=Boussinesq
M1–M2 0.092 0.010 0.0048 0.0055
M2–M3 0.070 0.0086 0.0038 0.0044
R 0.76 0.84 0.79 0.80

RNG k–�=Launder
M1–M2 0.11 0.060 0.033 0.052
M2–M3 0.017 0.0099 0.0083 0.0090
M3–M4 0.29 0.10 0.12 0.12
R(1−3) 0.16 0.17 0.25 0.17
R(2−4) 17.02 10.48 14.27 13.48

M1: 38; 642 elements; M2: 78; 242 elements; M3: 152; 546 elements; M4: 310; 082 elements. Taken
over the domain 06x=D63, 06y=D60:5. R is reported for the global convergence ratio.

Local GCIs are computed at non-divergent points where 1¡p¡2 and displayed for u in
Table III. The maximum GCI for u at non-divergent locations is 0.039; note that this is lower
than the computed global L2 norms, even with the factor of safety, order of accuracy and grid
re�nement factor taken into account. Factoring divergent points into the global norms causes
an increase in the error. More re�nement may need to be performed to achieve convergence
at all locations; however, those exhibiting convergence can be used for comparison with
experimental data.
It is unknown how many re�nements are necessary for the solution to reach convergence

at all points. Those points shown to converge can be considered in an asymptotic range.
The GCI can then be used to extrapolate how many re�nements are necessary to achieve
convergence within 1% by [2]:

GCIf =
GCIc
rp

(13)

Using this technique, it can be shown that 2:44× 106 grid points are necessary with the order
of accuracy p=1:27 to attain a GCI¡1% for points believed to be convergent.
Grid independence testing is performed for the RNG k–�=Boussinesq model in the same

manner as for the standard k–� method. Again, global L2 error di�erences are displayed in
Table II. Global error di�erences decrease consistently over the two re�nements. In this case,
the global convergence ratio, R=0:80, also suggests monotonic convergence. However, as for
the standard k ∼ �, the global order of accuracy, 0.66, is well below the expected second-order
accuracy of the method. Local tests for monotonicity demonstrate that 14% of the sampling
points are divergent. When these points are removed, �p=1:27 for all degrees of freedom;
this order of accuracy is within the bounds of the method [43].
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Table III. Local orders of accuracy and grid convergence indices for the u degree of freedom. Data are
shown for the standard and RNG k–� methods with Boussinesq constitutive relationships at locations

where monotonic convergence is indicated and 1¡p¡2.

Standard k–� RNG k–�/Boussinesq

x y p GCI x y p GCI

0.375 0.375 1.21 0.0057 0.375 0.375 1.13 0.0052
0.5 0.375 1.45 0.012 0.5 0.375 1.50 0.0099
0.625 0.125 1.52 0.00031 0.625 0.125 1.029 0.00012
0.875 0.25 1.06 0.0090 0.875 0.25 1.18 0.0070
1 0.125 1.40 0.0020 1.375 0 1.39 0.0032
1.125 0 1.23 0.0022 1.5 0 1.072 0.0064
1.125 0.125 1.94 0.0028 1.5 0.25 1.33 0.017
1.375 0.5 1.01 0.039 1.875 0.5 1.029 0.041
1.5 0.125 1.54 0.0077 2.125 0.5 1.62 0.023
1.5 0.25 1.13 0.020 2.25 0.25 1.53 0.021
1.875 0.5 1.01 0.036 2.25 0.375 1.06 0.038
2.125 0.5 1.51 0.022 2.375 0.125 1.34 0.019
2.25 0.25 1.34 0.021 2.375 0.5 1.14 0.033
2.25 0.375 1.02 0.033 2.5 0.125 1.09 0.023
2.375 0.125 1.06 0.023 2.5 0.5 1.17 0.027
2.375 0.5 1.08 0.031 2.625 0.375 1.031 0.037
2.5 0.5 1.09 0.027 2.625 0.5 1.097 0.028
2.625 0.5 1.02 0.029 2.75 0.5 1.24 0.028
2.75 0.5 1.09 0.029 2.875 0.25 1.31 0.025
2.875 0.25 1.12 0.025 2.875 0.5 2.00 0.014
2.875 0.5 1.64 0.017 3 0.25 1.82 0.018
3 0.25 1.60 0.018

Considering only the u degree of freedom, however, �p = 1:01: This is marginally acceptable
within the limitations of the modeling technique [43].
Similar to the standard k–� method, only 19% of points fall within the method’s order of

accuracy for u and should be used for comparison with experimental data. For these points, the
average order of accuracy increases to �p = 1:29. The GCIs for u at locations where 1¡p¡2
are displayed in Table III. The maximum error is 0.041, which is slightly greater than half
of the global error in u for the RNG k–�/Boussinesq method. Extrapolation using equation
(13) demonstrates that 1:95 × 107 nodes are needed to attain an error ¡1% for convergent
locations with p=1:29. It is unknown how many cells are needed to attain convergence at all
sampling points.
Table II also shows the absolute L2 error di�erences in u; v; p; k; and � for the RNG k–�/

Launder model. Errors decrease over the �rst two re�nements for all degrees of freedom.
Global R varies considerably for M1 −M3 for each degree of freedom, from 0.16 to 0.25.
The corresponding computed global order of accuracy ranges from 3.95 to 5.28. For each
degree of freedom, the global order of accuracy is much higher than expected for the method.
For this reason, a fourth re�nement to 310,082 (M4) elements is performed to determine
whether the �rst three meshes represent a global grid independent solution. As shown in
Table II, the L2 error di�erences actually increase substantially over this re�nement, over
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100% for v and �. R¿1 for each degree of freedom; global divergence is demonstrated. This
establishes that, although the error decreases over three re�nements, grid independence has not
been achieved. Whether this error is due to the constitutive relationship or the high iterative
error tolerance cannot be distinguished.

Experimental data comparison

Table IV compares recirculation zone lengths, interpolated from the velocity �eld, and sep-
aration angles found from the simulations and experiments. It is clear that both simulations
greatly underestimate the length and width of the near wake. The separation points yielded
by both models are closer to super-critical turbulent separation [53] than to that of sub-
critical �ow (e.g. Reference [54]). These observations agree with those of Rodi [7], Bosch
and Rodi [8] and Kim and Boysan [10], where excessive production of turbulence kinetic
energy upstream of the blu� body caused late separation and subsequent suppression of the
near wake. Validation cannot be made for either model. However, to illustrate the veri�cation
process, u velocities are compared with experimental data in Figure 3 along y=D = 0:5, where
many of the non-divergent points lie. The GCIs are used to develop error bars around the
model values for the standard and RNG k–� simulations, and only non-divergent locations

Table IV. Wake characteristics for each simulation and the experiment.

Experiment Standard k–� RNG k–�=Boussinesq

Bubble length 2.15 1.51 1.81
Separation angle 83◦ 132◦ 131◦
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Figure 3. Comparison between standard k–� and RNG k–�=Boussinesq models and
experimental data for the velocity pro�le at y=D = 0:5. Monotonic convergence is

indicated by the error bars at all points displayed.
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with acceptable orders of accuracy are used in the data comparison. As expected, no vali-
dation within the accuracy of the model is made. In this �gure, it is evident that the model
overestimates the near-wake velocity pro�les.

CONCLUDING REMARKS

This work provides a veri�cation study of RANS methods for the problem of air�ow past
a circular cylinder. It contributes an example of following a prescribed methodology for
determining the accuracy of a CFD simulation [1, 2]. While most CFD studies presented in
the literature do use multiple meshes, very few actually test for non-monotonic behaviour
and compute the observed order of accuracy and GCIs. This study serves to demonstrate that
these metrics are critical to understanding the limitations of a given simulation. For example,
it would have been easy to conclude from the global convergence ratios that the standard and
RNG k–� simulations represented grid-independent solutions with which we could compare
our experimental data. However, further study of the local GCIs demonstrated this to be
untrue for the entire mesh and that O(106−107) nodes would be required at minimum to
achieve convergence at all pointwise locations. This clearly illustrates the issues involved
when attempting to obtain accurate and reliable CFD results.
For the points where convergence was indicated, these predictions would be classi�ed by

Lasher [22] as category III. Qualitatively, the nature of �ow past a two-dimensional circular
cylinder was captured, despite notable di�erences between the simulation and experiment with
respect to bubble length and separation point location. If the velocity �eld overprediction were
maintained with changes in geometry or initial conditions, the models could be considered to
provide category II predictions. While their value is somewhat limited for �uid dynamicists,
engineers may perhaps derive some utility from the application.
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